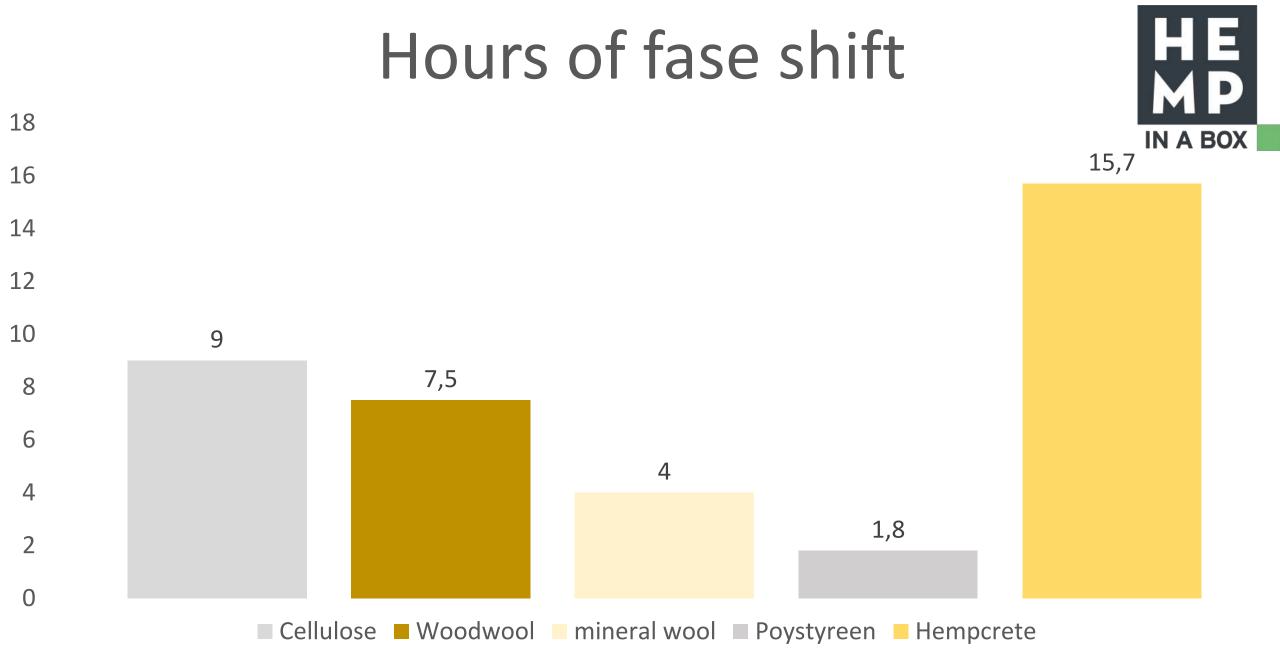


Can Hemp delete the airco?

(And help to stock your wine)



Fase Shift

How much time does it take before the sun gets through the wall/roof

MOISTRE

•When the moistre is high, it feels like it is warmer.

Hemplime as a regulator of RH



Figure 9: Koele berging: relative humidity distribution - average

HE MP IN A BOX

Interests?

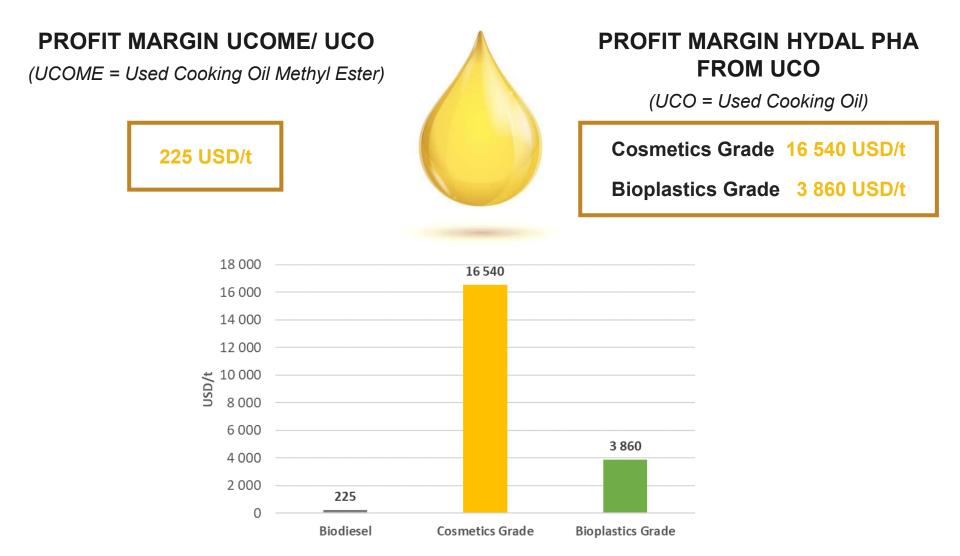
Are Circular Economy Hydal PHA technology and products a good business?

> Lenka Mynářová Member of the Board

Key idea of Hydal

Material recovery of WASTE-WCO

Protection of waste watter plant – collection of WCO in household


BIOPOLYMER PHA BIOPLASTICS CHEMICAL **SPECIALITIES** Zero Waste manufacturing **"NATURE WORKS" Biotechnological process** Hydal is NAT()

Consultation, integration to value chain and sharing the best practices

WHAT ABOUT BUSINESS?

Biodiesel or biopolymer from UCO?

Note: UCOME minus UCO according to RED schemes Source: https://www.greenea.com/en/market-analysis/ *Note: Selling price of Hydal PHA Grades - UCO price/t Source: NAFIGATE data*


AND WHAT ABOUT NATURE?

Hydal is NATORE

The LCA method has shown a significant contribution of the production of PHB (poly-3-R-hydroxybutyrate) polymers from used cooking oil using biotechnology Hydal to environment.

Compared to polymers produced from primary raw materials, biotechnology Hvdal material saves raw sources. including oil, reduces CO₂ emissions (so it reduces contribution to global warming), reduces ecotoxicity, freshwater toxicity, acidification, eutrophication (the process of nutrient enrichment, especially by nitrogen and phosphorus, which harm natural environment) and reduces also other negative effects on the environment.

Thank You

PHARIO[®]

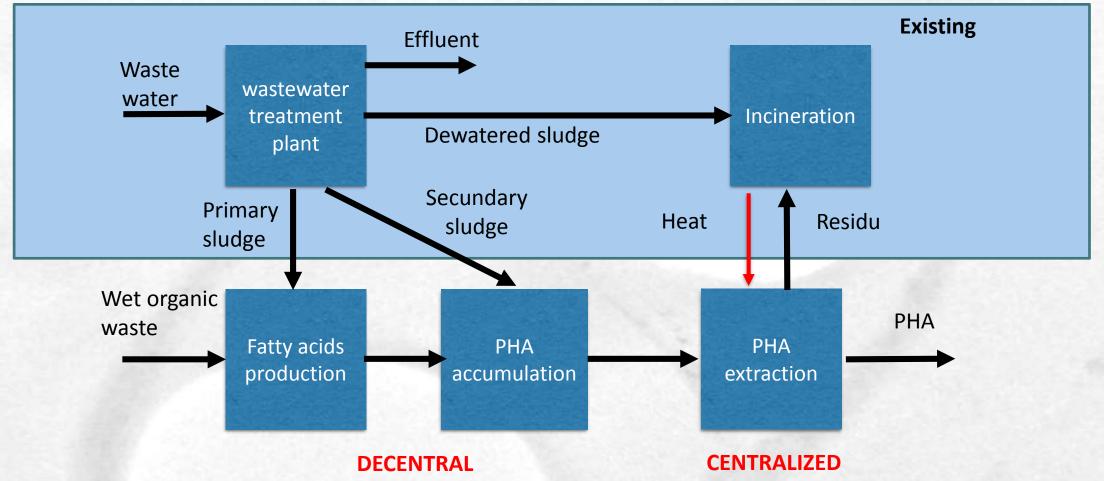
High-quality PHBV from municipal wastewater

from pilot to successful demo: welcome to new applications

Martijn Bovee Business Developer PHARIO®

www.phario.eu

Biodegradability PHA general


PHA is a unique polymer compared to other biopolymers: *It can degrade to CO2 and H2O* (truly) by its nature

- In marine environment
- In soil environment
- In industrial composting
- In home composting
- Mechanically recyclable
- Anaerobic digestion (CH4), or into new PHA

(will be tested to standards during PHARIO demo stage) Overview of biobased plastics (thermoplastics)

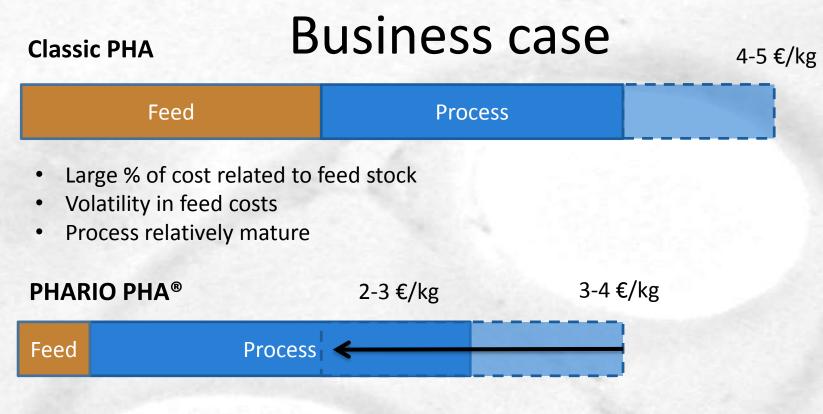

	Non-biodegradable	Biodegradable (in industrial composting installation)	Biodegradable (in water in nature)
On the market today	Bio-PE (drop-in) PA11, PA10.12, PA4.10	PLA (and PLA/PHA blends) PHA (and PHA/TPS blends)	PHA Regenerated cellulose
Under development (not on the market yet)	PEF Drop ins: Bio-PP , Bio- PVC, Bio-PET, Bio-PTT PBT PA6, PA6.10, PA66, PA12	Bio-PBS Cellulose Acetate PGA PLA/TPS blends Bio-PBS/TPS blends	

PHARIO[®]: a new value chain

- Municipal wastewater treatment "trains" bacteria for PHA production
- Added value by harvesting bacteria and use of organic residuals to make PHA bioplastic
- Extraction of the PHA rich biomass with green solvent
- Steerable and high quality PHA polymer

Unique solvent extraction

- High purity and stable product from heterogenous waste
- High and tuneable Mw
- Ability to homogeneously blend different HV batches


A scalable process

Pilot (10 month)

- Biomass WWTP behaves consistent
- Feed quality determines PHA quality (so not the influent/biomass)
- Consistent quality PHA possible (enough control options)
- Quality PHARIO PHA: good and unique

Scalability

- In principle all WWTP's are suitable
- Commercial scale: 5000 ton PHA, 800.000 P.E.
- Potential Netherlands: 25.000 ton PHA (at least)
- Potential EU: 500.000 ton PHA

- Feed stock is very cheap
- Long term, stable contracts for feed stock
- Costs based on extrapolation from pilot => much room for optimization

Value case:

- 70% lower than classic PHA production
- Potential to be a <u>climate neutral plastic</u>
- Tertiary feedstock: no food, no GMO

PHA2USE project 2019-2021

Demonstration PHA2USE

- PHA for Application development
- Technology upscaling

Two approaches:

- PHARIO[®] from sludge
- Paques/TU Delft rich culture

Dordrecht: wwtp & sludge incinerator 350 kg/day PHA rich biomass production

Pilot extraction facility Extraction 100 kg batches for key application partners

Let's demonstrate together

PHARIO PHBV capabilities

- Injection moulding, film extrusion: possible
- Other processing: in development
- Bio-degradability as a (controlled) and valued function or end-of-life: water, soil, home, industrial composting, anaerobic digestion
- Datasheet: available (three grades)

Target applications:

- Bio-degradable: For example: seed coatings, fertilizer coatings, horticulture, agriculture, weed protection, plastic bags, packaging (oxygen barrier properties), mulch foils,
- Other applications with added value (impact modifiers PLA and other bio based polymers)

Please share your ideas on application development?! OPEN SPACE STILL FOR NEW APPLICATION PARTNERS martijnbovee@efgf.nl

New generation of biomaterials

1. Company presentation ADBIOCOMPOSITES

- Technological company specialised in developing and commercialising advance biomaterials
- **Supported by ITENE (R&D packaging centre)**

2. BlockPLA[™] grades

Serie	Processing technique	
BlockPLA™ E	Extrusión	
E2410	Alta temperatura de degradación	
E2440	Alta propiedad barrera	
BlockPLA™ I	Inyección	
12410	Alta temperatura de degradación	
12440	Alta propiedad barrera	

BlockPLA[™] is a recyclable and compostable material (EN 13432-2000) with advanced properties. BlockPLA[™] is based on PLA and can be supplied as masterbatch or ready to use pellet to be processed by the conventional processing techniques (Extrusion, injection, etc.)

CIRCULAR ECONOM

3. Benefits of using BlockPLA™

TECHNICAL PROPERTIES

High barrier (OTR/ WVTR) Thermal stability and improved mechanical properties Transparent

INDUSTRIAL PRODUCTION

Supplied as masterbatch, additive, or ready to use pellet Processed by conventional processing techniques

FOOD CONTACT SAFETY

Block PLA does not contain nanoparticles Food contact approved

LIFE CYCLE

BlockPLA is biodegradable and Compostable EN 13432-200

We can Taylor our BlockPLA™ grades to your technical requirements

LET US KNOW YOUR APPLICATION!

www.adbiocomposites.com Parque Tecnológico de Paterna C/ Albert Einstein 5, Valencia +34 672 387 098 j.martin@adbiocomposites.com

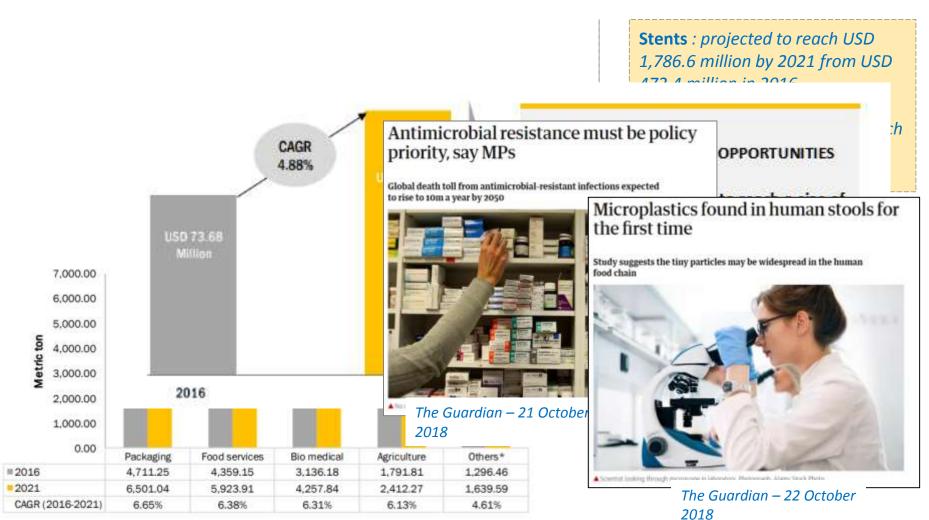
BIOPLASTICS FOR MEDICAL APPLICATIONS

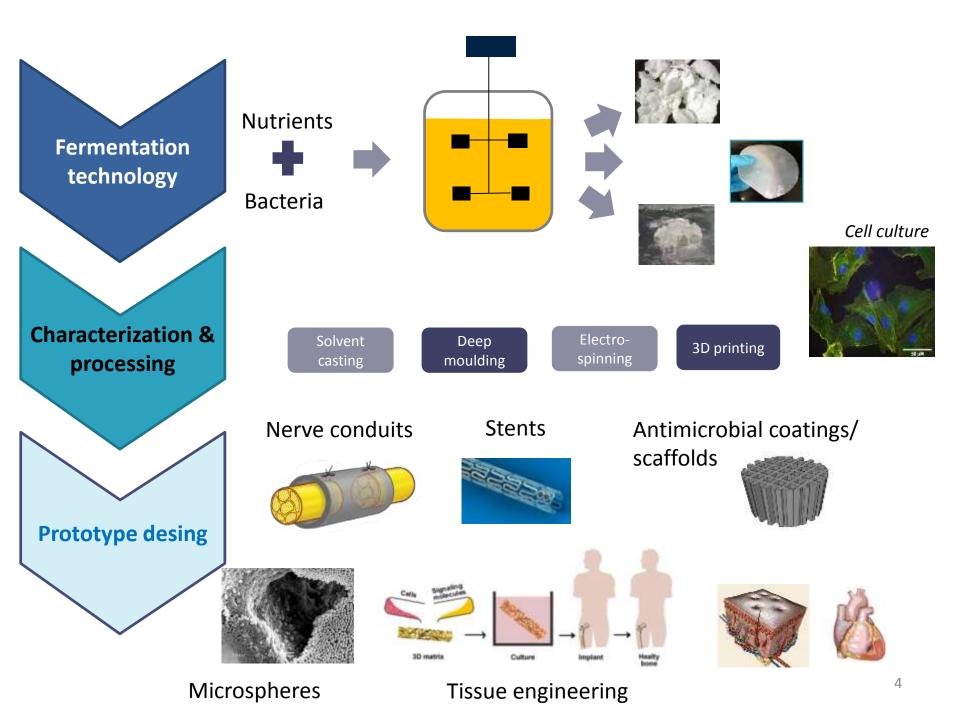
Cristina Pérez-Rivero Applied Biotechnology (Prof. Ipsita Roy) perezrc@westminster.ac.uk I.Roy01@westminster.ac.uk

What we do

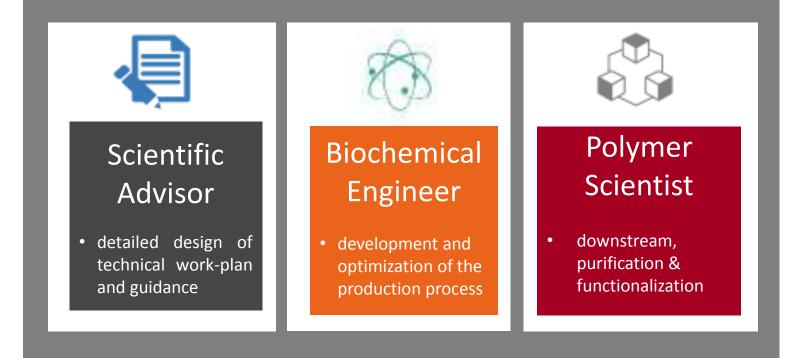
Bio-sourced polymers

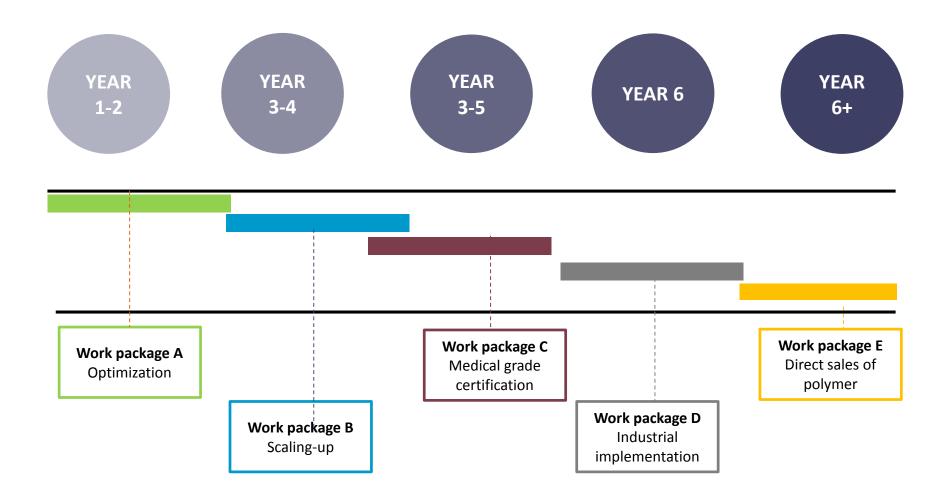
- Polyhydroxyalkanoates (PHAs)
- Bacterial cellulose
- Y-Glutamic acid


High performance materials


- Highly biocompatible
- Tailor-made: properties adjusted to meet product requirements

Biodegradable


 in human body, soil and marine environments


Growth of PHAs market

THE TEAM

Roadmap

Imperial College

Thank you for your attention!

Pilot Scale Equipment at the BioComposites Centre Bangor, Wales, UK

Dr. Adam Charlton

adam.charlton@bangor.ac.uk bc.bangor.ac.uk 00 44 1248 388072 Pitch perfect and boost the European bio-economy event

7 November 2018 Brussels Airport

INNOVATION IN BIO-MATERIALS FOR INDUSTRY

Established in 1989, self financing and focused on collaboration with industry (publicly funded R&D projects and commercial contracts)

Demonstration of a range of biomass processing, extraction and conversion technologies up to TRL4

Extensive experience processing a range of agri-food– forestry residues BioComposites Centre

RESEARCH AREAS

BIOMASS

Mycology – application of fungi as biological pre-treatment

Bio-based polymers & fibre (food packaging)

Pre-treatment physical and chemical

Enzymatic fractionation (functional food ingredients)

Plant Extracts (cosmetics, personal care, medical sectors)

Life Cycle Assessment

Bio-Composite Materials & Bio-resins (construction)

DRY BIOMASS PRE-PROCESSING

Chipping, chopping, sieving & fibre drying

Atmospheric & continuous pressurised disc refining

WET BIOMASS PROCESSING

Physical Heated, Dewatering stirred tanks separation Ultrafiltration Wet milling

Spray drying

BIOBASED PRODUCT DEVELOPMENT

Fibre based packaging

Bioplastics Wood plastic composites

Biocomposite panels

Plant extracts

Your multi-skilled scientific and technical partner

Expertise – Quality – Speed – Confidentiality

CELABOR: Walloon technological pilot platform for biomass refining and downstream processing

Dr. Mahmoud Hamzaoui

Pitch perfect and boost the European bio-economy event, 7 November 2018, Brussels Airport

31/10/2018

CELABOR: Five departments in the heart of the "Bioeconomy" sectors

CELABOR scrl. is a Belgian scientific and technical center based in the Petit-Rechain industrial park near Verviers. CELABOR is offering scientific and technical support to companies involved in all sectors of **circular-economy** and **bioeconomy** including agrifood, green processes, packaging, textile and environment.

Celabor: Walloon technological pilot platform for biomass refining and downstream processing

"Extraction" & "Sustainable Materials – Packaging" departments

31/10/2018

Celabor: Walloon technological pilot platform for biomass refining and downstream processing

Technological pilot platform (350 m²)

Two pilot plants **Supercritical Fluid Extractors SFE-CO2** (2x 6L/batch)

Pilot-scale Subcritical Water Extraction (SWE) (6L/batch)

Conventional solvent extraction (25L and 400L)

Pilot-scale **Pulsed Electric Field** (Solid: 0,5 kg/batch; liquid: 350L/batch)

Ultrasounds & Microwave assisted extraction (25L UAE/ 5L MAE)

High Pressure Homogenisation for NFC processing

Pilot-scale **post-treatment equipment** (Freeze-dryer, Spraydryer, Evaporator, Centrifuge)

Purification platform (CPC, MPLC, Prep-HPLC)

Advanced **analytical lab** (UPLC-MS, GC-MS, ICP-MS, HPLC-DAD-ELSD

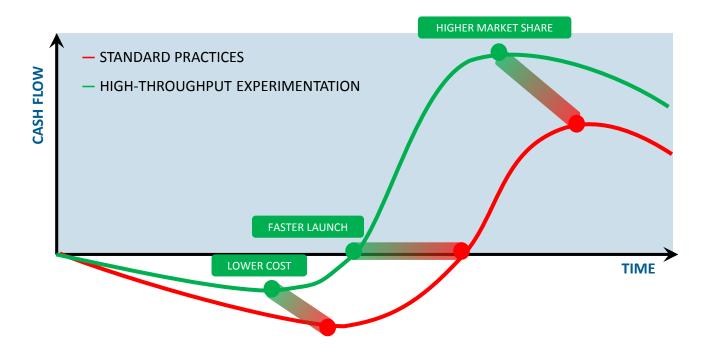
RESEARCH PROGRAM & COLLABORATIVE PROJECTS

The main mission of Celabor is to encourage technological innovation and the development of new products or processes through research and development. Celabor conducts private development and research on behalf of companies and also participates in research and development programs financed by **Europe** and the **Regions**.

31/10/2018

Reduce time-to-market for bio-based products

High throughput methodologies for bio-based materials R&D


michele.kint@flamac.be

Challenge : Time-to-market critical for innovative materials

• Solution : High throughput methodologies

- Faster : more samples in less time
- Smaller sample sizes : less material consuming
- Broaden research : more samples so more data available for research

• Competitive advantage :

FLAMAC - High throughput technologies

• Entire Value Chain : from synthesis to the final product

High-throughput characterization

Recent Launch of Automated Stability Platform

0

.....

Understanding Physical Stability of Bio-based Formulations (emulsification/foaming/dispersion/ color/hydrolysis/...)

Looking forward to collaborate !

E.g. Collaboration Applisurf : UGent, BBEPP,... & Industrial partners in field of 'Bio-surfactants'

flamac