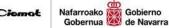


CENTRO NACIONAL DE ENEGÍAS RENOVABLES NATIONAL RENEWABLE ENERGY CENTER OF SPAIN

Goizeder Barberena Strategy and Business Development Manager gbarberena@cener.com

BIO2C – Biorefinery and Bioenergy Centre

Process Development Units (PDUs) for bioproducts and advanced biofuels on a pilot scale level as an intermediate step towards the industrial scale-up of these technologies. Services, among others:


- Testing and Analysis
- Product and Process Development
- Tailor-made research Contracts
- Participation in R&D Funded projects (i.e H2020)
- External staff stages and training

Integrated trial and **demonstration platform** designed to develop:

- processes,
- equipment and specific components,
- new bioproducts and biofuels,
- bio-refinery concepts.

BIOCHEMICAL PROCESS UNIT

PILOT PLANT

Pretreatment

- Continuous horizontal reactor
- Feed flow: up to 5 kg/h
- Pressure up to 14.5 bar
- Temperature up to 200ºC
- High flexibility in feedstocks

Enzymatic Hydrolysis

- High solids enzymatic hydrolysis stirred tank reactor
- 200l capacity
- Temperature: 20-80 °C
- Atmospheric pressure

Fermentation

- Fully monitored bioreactors
- 40l and 100l capacity
- Temperature: 23-85°C
- Adjustable agitation speed, air/gas ratios, pH, nutrients

BIOCHEMICAL PROCESS UNIT

INDUSTRIAL PLANT

Modular and flexible facility. Main equipments:

- Biomass feeding system
- High solid enzymatic reactors (2 x 3 m³)
- •Solid- liquid separation,
- Detoxification and liquid fraction conditioning
- •Fermentation train consisting of several monitorized bioreactors (1, 3 and 6 m³)

PRIVATE PROJECTS (EXTRACT)

Private Customer 2013

UPSCALLING OF A FERMENTATION PROCESS (CONFIDENTIAL)

Detail of one of the fermenters in the Biochemical Process Unit

PROJECT SCOPE

Scaling up of a fermentation . process of conversion of wheat straw into industrial oils, pretreatment. enzymatic hydrolysis, filtration, . fermentation, centrifugation and

CENER ROLE

(plate centrifuge, drier)

Plant operation

3 test campaigns (2 x 3000 litter enzymatic hydrolysis, 3000 litter fermentation)

Private Customer 2016-2018

OPTIMIZATION AND UPSCALLING OF A FERMENTATION PROCESS (CONFIDENTIAL)

Screen control of the 1000 L bioreactor

Private Customer

2017

PROJECT SCOPE

Optimization and scaling up of a • Product chromatographic fermentation process for agrobiological product production

CENER ROLE

- characterization development
- Fermentation test for production process optimization and upscalling up from flask to 1000 litters
- Economic and sustainability assessment

Private Customer 2017

UPSCALLING OF A FERMENTATION PROCESS for PHB production

PROJECT SCOPE

CENER ROLE

Scaling up of a fermentation process of conversion of cereal residue into Polyhydroxybutyrate (PHB), including:

- Project coordination: including equipment from vendors (decanter, centrifuge)
- 1st stage upscalling to 100 L
 - 2nd stage upscalling to 3000 L
- enzymatic hydrolysis,
- decanter. · fermentation and
- centrifugation

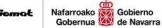
Plant operation

Detail of one of the fermenters in the **Biochemical Process Unit**

PROJECT SCOPE

production

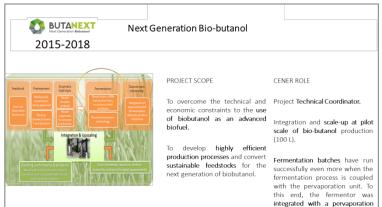
CENER ROLE


Scaling up of a fermentation • Project coordination: including process of conversion of organic fraction of municipal solid waste into into 2,3 BD including:

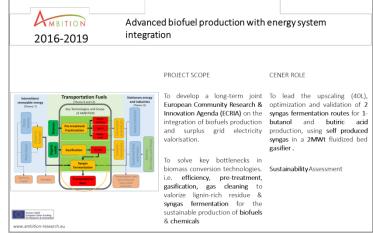
UPSCALLING OF A FERMENTATION PROCESS for 2,3 BD

- enzymatic hydrolysis,
- decanter,
- fermentation and
- · centrifugation

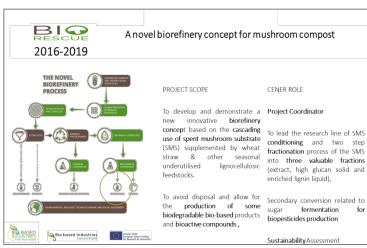
- equipment from vendors (decanter, centrifuge)
- Plant operation
- 1st stage upscalling to 100 L
- 2nd stage upscalling to 3000 L


Detail of one of the fermenters in the Biochemical Process Unit

Norton 2020 European Dream Funding


http://butanext.eu/

FUNDED PROJECTS (EXTRACT)



membrane module for this first

time on pilot scale.

FACILITIES FOR WASTES AND BIO-RESOURCES MANAGEMENT

PhD. Hary DEMEY

CEA, LEADER IN R&D OF RENEWABLE ENERGIES

9 centers 16000 empl. 4,1 Md€/y 195 start ups 743 patents/year

R&D GOAL

Biomass and waste

Wood

Agricultural residues

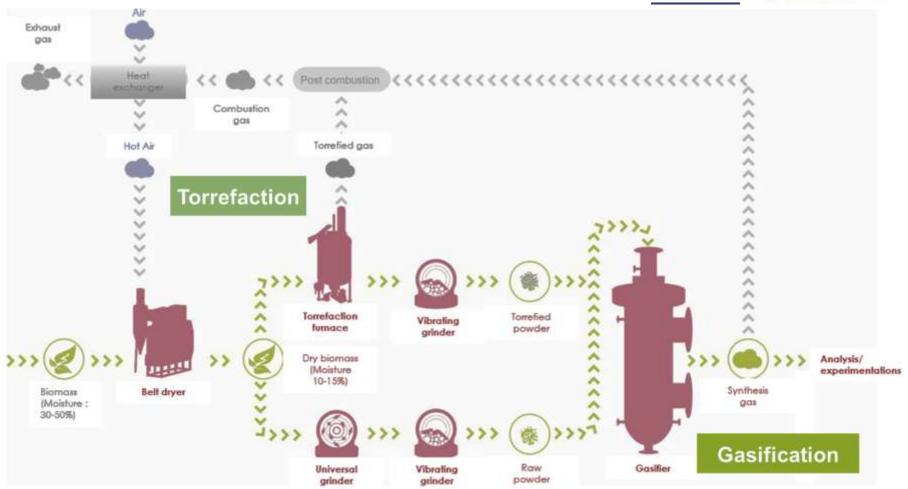
Tires

Sludges

Microalgae

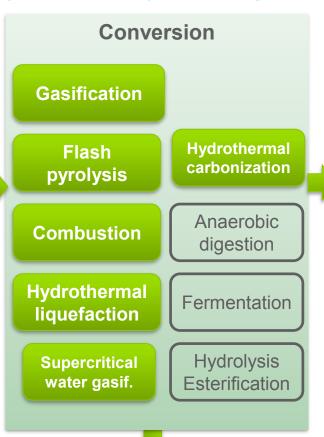
Refused derived fuels (RDF)

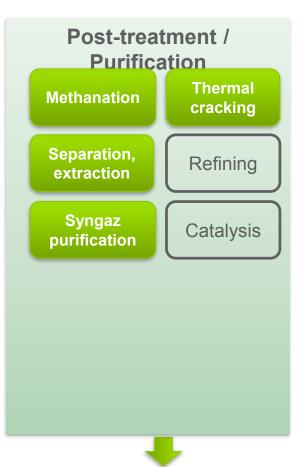
Heat & power


Solid, liquid and gaseous fuels

Biomaterials

GENEPI RESEARCH FACILITY




Grinding

TECHNOLOGY DEVELOPMENT ACTIVITIES

Torrefied product **Powders** Pellets Organic molecules Activated carbon Biochar

Syngas Solid fuel (char) Bio-oil Ash, minerals Clean water CO_2

Biofuels (diesel, methanol) SNG Bio-oil, Bio-crude Building block molecule Ethanol, bio-butanol, H₂ Hary DEMEY I 5

EXPERTISE AND SKILLS

- Resource characterization
- Process engineering and thermodynamics
- Inorganic species behavior and agglomeration control
- Design, instrumentation and implementation of experimental pilots
- Process upscaling: pilot and demonstration performance analysis
- Modeling of torrefaction, pyrolysis and gasification physical and chemical reactions.
- Analysis of liquid, solid and gaseous products, tars and trace pollutants
- Process simulation (Proseet, Prosim)
- Economical evaluation of the various bioenergy routes (multi-scale, multi-criteria, multi-resource, muti-applications)

Industrials

Academicals

MAIN PARTNERS

MINES Albi-Carmaux

Grenoble INP

TODAY SAME + SAME USED

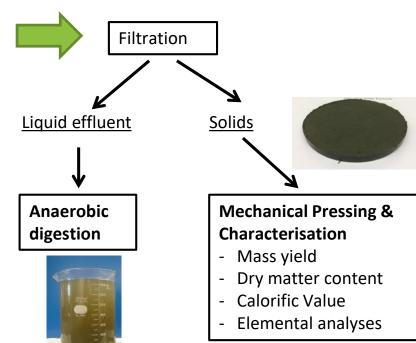
ceatech

PhD. Hary DEMEY hary.demeycedeno@cea.fr

SUSTAINABLE MATERIALS FROM SEWAGE SLUDGE

Pavlina Nanou, Jan Pels, Levien de Lege

Pitch perfect and boost the European bio-economy event 7th of November 2018

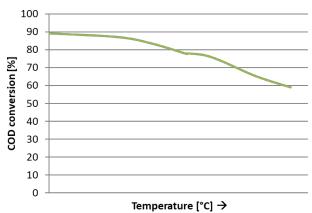

EXPERIMENTAL APPROACH - LAB TESTING

Sewage Sludge (Digested and Undigested)

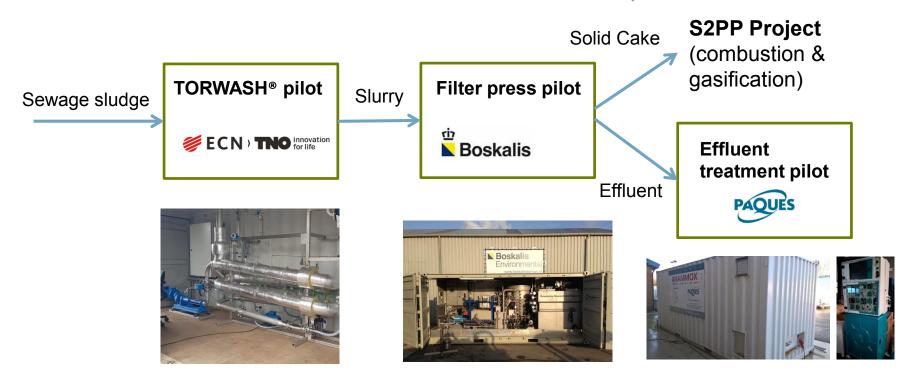
20-L autoclave vessel 150-250°C

TORWASH® = TORREFACTION + WASHING

- Upgrading of biomass that has too much water or too much salt
- Unique concept:
 - It enables efficient mechanical dewatering
 - It enables complete removal of salts
 - Mild process conditions allow digestion of the effluent
 - No use of flocculants
 -) ECN patent WO 2013/162355
- Goal: maximum energy and materials
 - 1st product: solid biomass fuel
 - 2nd product: biogas from digestion of effluent
- Potential for controlled release of phosphorus


Solid Biofuel Pellets

DIGESTED AND UNDIGESTED SEWAGE SLUDGE LAB SCALE RESULTS


- > TORWASH® and dewatering of sewage sludge results in a pressed cake with 61-67 wt% dry matter
- Both effluents are well digestible
- Net calorific value of solid product increases to 14-18 MJ/kg
- Phosphorus largely in solution, but may be manipulated

	dry matter content wt%
After centrifuge, before TORWASH®	8
After TORWASH® and dewatering Digested sludge	61
After TORWASH® and dewatering Undigested sludge	67

PILOT TESTING AT WWTP ALMERE, NL

POTENTIAL SAVINGS FOR ALMERE: 1,1 M€

Almere	Dry matter	Volume [ton]	Disposal costs*
Centrifuge	8%	56 000	M€ 3.4
Existing Press	21%	21 000	M€ 1.3
Best Press	24%	19 000	M€ 1.1
TPH	30%	15 000	M€ 0.9
TORWASH	65%	3 100	M€ 0.2

* € 60 per ton "as received" in all cases

repeatedly obtained for various raw materials

MORE INFORMATION

Consortium partners

Financial support

Rijksdienst voor Ondernemend Nederland

Project Leader

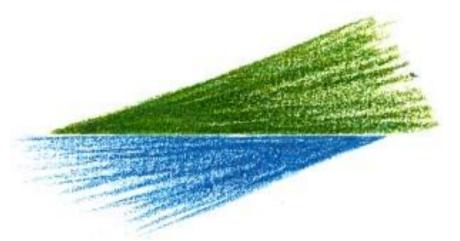
Dr. ir. Pavlina Nanou

Technical Lead

Biomass Upgrading to Fuels

pavlina.nanou@tno.nl

+31 615 40 7371

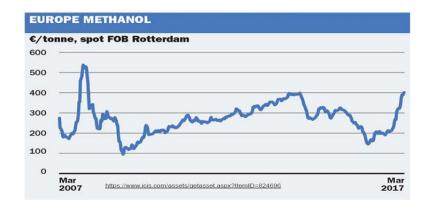

www.tno.nl

Westerduinweg 3 P.O. Box 1

1755 LE Petten 1755 ZG Petten

The Netherlands The Netherlands

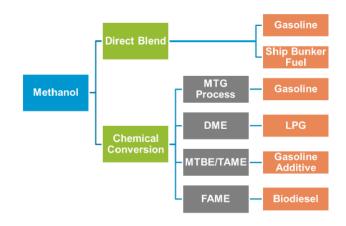
Green Bio Power b.v.

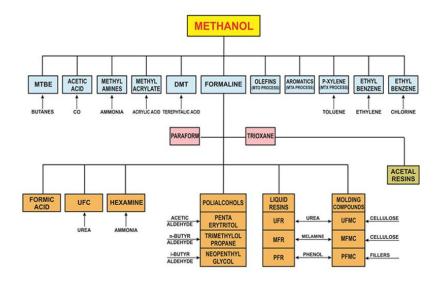


CO2 to Methanol

Product development Ing J.H.F Veldhuis MBA Businessdevelopment

Methanol market

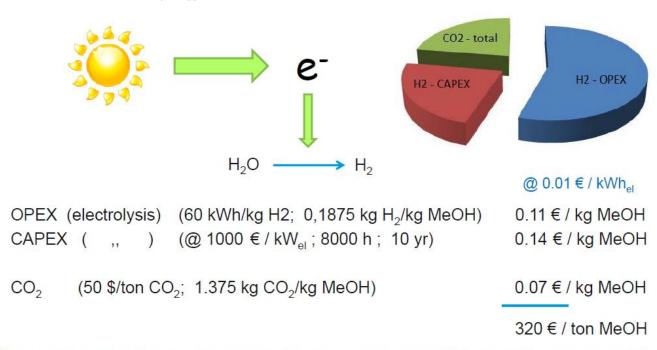

- 72 Mtonne per year production globally (Main producer and consumer)
- 2/3 is produced by Natural gas Steam reforming, 1/3 Coal gasification
- Market is moving from Chemicals to Energy fuel
- Methanol can be used as: Blending fuel (15 % in gasoline), Monofuel or Hydrogen carrier
- High octane number: 115, No PM emissions, low NOX/SOX
- Offtakers: Marine fuel, Heavy duty trucks
- Cost price SMR/Coal gasification route: USD 326-376/tMeOH
- Sales price Methanol:



Methanol market

Methanol as fuel

Methanol as building block


Renewable Methanol

- H2 made from Electrolysis, Europe
- In these regions USD 60/MWh is possible with load factor (around 4500 h, >4000 h required)
- Large Electrolyser costs (400 MW): USD 450 per kW → USD 3-4 /Kg H2
- Methanol price: USD 700 /tonne

- Syngas can be also made from Wood, Biomass
- Cost Methanol: varying from USD 225-1300/t for wood, USD 280-700 for waste

Twente case

• Electricity price: 10 USD/MWh

CO₂ as feed: very large recycle!

= Increase of OPEX and CAPEX!

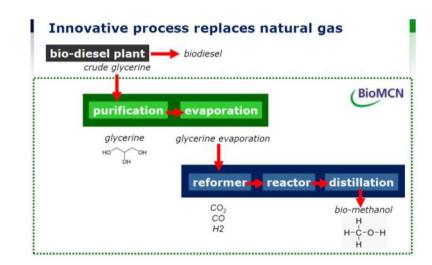
New Reactor technology
Reactor + Recycle + Separation in 1 unit

Process implications when shifting from CO to CO₂

For cost-competitiveness: electricity at max. around 0.01 € / kWh_{el} is needed!

Companies present in "bio" methanol

CRI first of its kind Emissions-to-Liquids facility in Iceland George Olah (GO) Renewable Methanol Plant, Svartsengi, Iceland


First commissioning: 2012
Capacity expansion: 2015
CCU throughput: 5,600 t/yr CO₂

Electrolyzer capacity: 800 t/yr H₂(1200 Nm₃/hr) Production capacity: 4,000 t/yr methanol Enerkem in Rotterdam: partnerships will help accelerate Enerkem's global expansion

In 2018, a consortium of companies comprising Air Liquide, AkzoNobel Specialty Chemicals, Enerkem and the Port of Rotterdam has signed a project development agreement covering initial investments in an advanced waste-to-chemistry facility in Rotterdam. The facility will be the first of its kind in Europe to provide a sustainable alternative solution for non-recyclable wastes, converting waste plastics and other mixed wastes into new raw materials.

Infographic courtesy of Akzo Nobel

Follow up in project Twente

- CO2 to Methanol is part of industrial bio-energy project Twente: CO2 utilization
- Part of Power to Products program: green gas, bio-LNG, Methanol out of Bio Methane
- October 2018: Greenpower Twente offers a development program with new innovative Methanol reactor and scale up in collaboration with TU Twente

